Introduction – Laboratory Quality Management System

Robert Martin, MPH, DrPH
President
Diagnostic Microbiology Development Program
Http://dmdp.org

Learning Objectives

At the end of this activity, participants will be able to:

- Explain the importance of a quality management system
- List the quality system essential elements
- Describe the history of development of quality principles
- Discuss relationship of this quality model to ISO and CLSI standards

The Quality Management System

What is Quality?

What is 'quality'?

- Good or Excellence
- Retaining standard
- Satisfaction
- Acceptable
- Accuracy
- Reliable
- On time

What is 'quality'?

- Degree to which a set of inherent characteristics fulfils requirements
- The standard of something as measured against other things of a similar kind
- The ability of a product or service to satisfy stated or implied needs of a specific customer

Essential to all aspects of health care are **laboratory results** that are:

- accurate,
- reliable, and
- timely

A laboratory error and its consequences

An 83 year old male was admitted to hospital with fever, weight loss, and cough, and was being investigated for possible tumor. Sputum was reported to be positive for tuberculosis, but on later review, found to be false positive culture due to in-laboratory contamination. Further investigation found 14 additional patients with false positive TB culture.

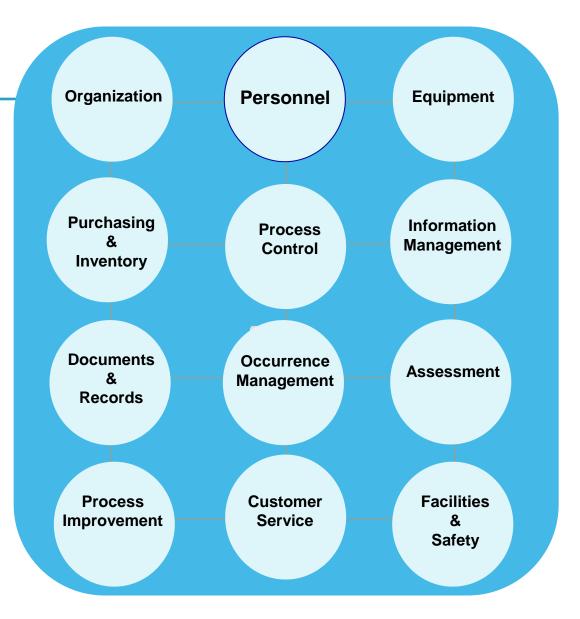
What problems are created by this error?

A laboratory error and its consequences

An 83 year old male was admitted to hospital with fever, weight loss, and cough, and was being investigated for possible tumor. Sputum was reported to be positive for tuberculosis, but on later review, found to be false positive culture due to in-laboratory contamination. Further investigation found 14 additional patients with false positive TB culture. Consequences included:

- Delay in correct diagnosis
- Unnecessary treatment
- Treatment complications
- Pattern of other contaminations discovered
- Problem resolution required 6 months of investigation, contacting of more than 200 patients, many requiring culture and X-Ray re-examination.
- Revision of laboratory procedures eradicated the problem.

Laboratory errors cost in time, energy, personnel, and patient outcomes

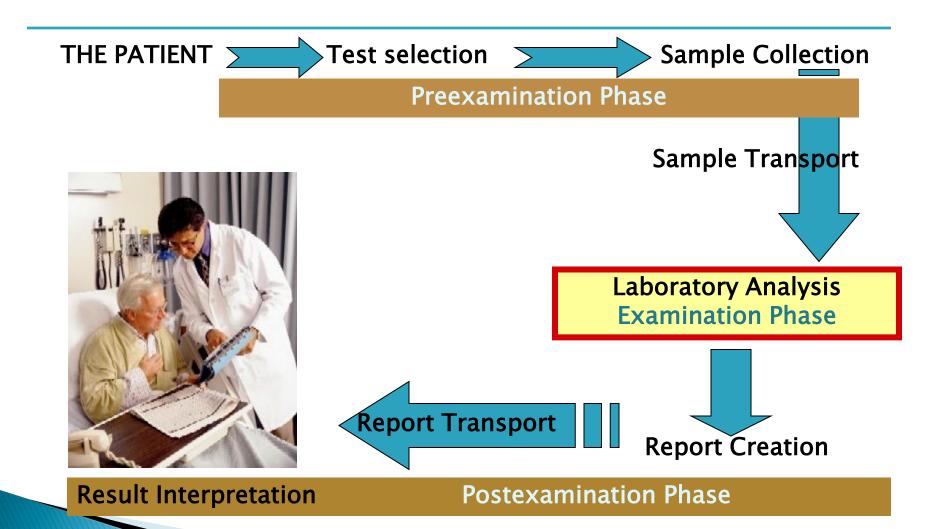

Laboratory errors cost in

time

personnel effort

patient outcomes

How do we achieve excellent performance in the laboratory?



Quality Management System Definition

Coordinated activities to direct and control an organization with regard to quality (ISO,CLSI).

All aspects of the laboratory operation need to be addressed to assure quality; this constitutes a quality management system.

Path of Workflow

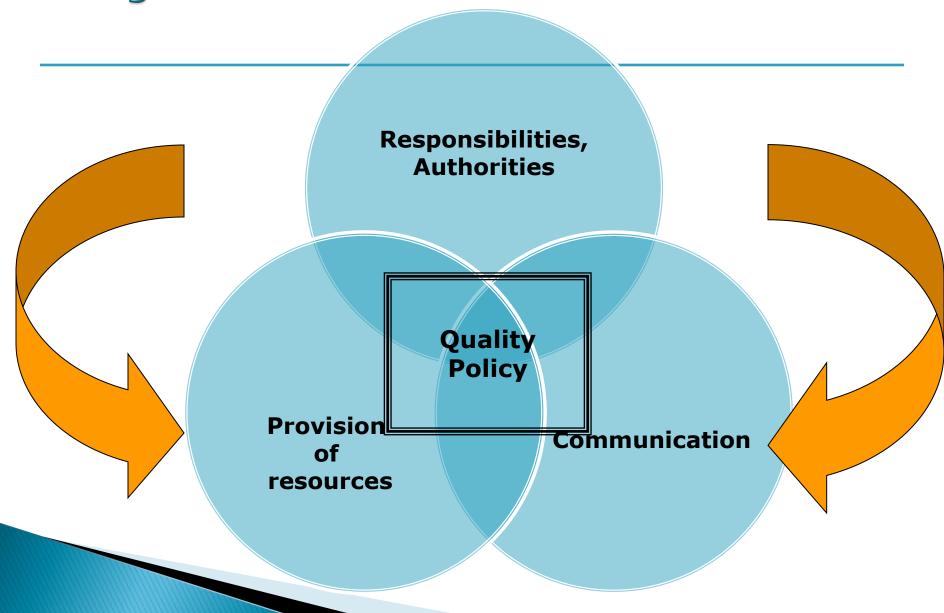
WHY is the Path of Workflow essential to consider in health laboratories?

The **entire process** of managing a sample must be considered:

- the beginning: sample collection
- the end: reporting and saving of results
- all processes in between.

Laboratory tests are influenced by

- laboratory environment
- knowledgeable staff
- competent staff
- reagents and equipment
- quality control
- communications
- process management
- occurrence management
- record keeping



Twelve Quality System Essentials

set of coordinated activities that function as building blocks for quality management

Organization

Personnel

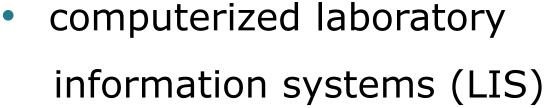
- human resources
- job qualifications
- job descriptions
- orientation
- training
- competency assessment
- professional development
- continuing education

Equipment

- acquisition
- installation
- validation
- maintenance
- calibration
- troubleshooting
- service and repair
- records

Purchasing and Inventory

- vendor qualifications
- supplies and reagents
- critical services
- contract review
- inventory management


Process Control

- quality control
- sample management
- method validation
- method verification

Information Management

- confidentiality
- requisitions
- logs and records
- reports

Documents

creation

revisions and review

control and distribution

Records

collection

review

storage

retention

Occurrence Management

- complaints
- mistakes and problems
- documentation
- root cause analysis
- immediate actions
- corrective actions
- preventive actions

Laboratory Assessment


External

- EQA
 - Proficiency testing
- Accreditations
 - Inspections

Process Improvement

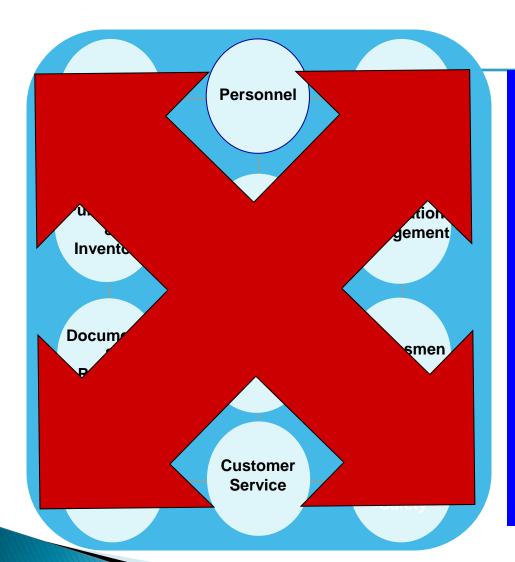
opportunities for improvement (OFIs)

- stakeholder feedback
- problem resolution
- risk assessment
- preventive actions
- corrective actions

Customer Service

- customer group identification
- customer needs
- customer feedback

Facilities and Safety

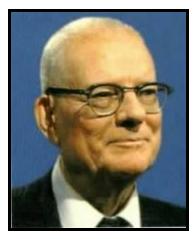

- safe working environment
- transport management
- security
- containment
- waste management
- laboratory safety
- ergonomics

Implementing
Quality Management
does not
guarantee
an
ERROR-FREE
Laboratory

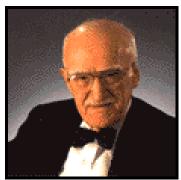
But it detects errors that may occur and prevents them from recurring

Laboratories not
implementing a
quality management
system guarantees
UNDETECTED
ERRORS

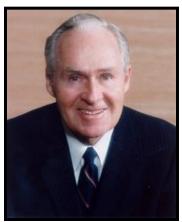
Laboratory Quality Management System


Coordinated activities to direct and control an organization with regard to quality.

ISO 9000:2000


Innovators of Quality

Walter Shewhart 1891-1967


W. Edwards
Deming
1900-1993

Joseph Juran 1904-2008 (103 years)

Philip Crosby 1926-2001

Robert Galvin b. 1922

A Brief History of Quality Management

Quality Management is not new.

Innovator	Date	Cycle
Walter A.Shewhart	1920s	Statistical Process Control
W. Edwards Deming	1940s	Continual Improvement
Joseph M. Juran	1950s	Quality Toolbox
Philip B. Crosby	1970s	Quality by Requirement
Robert W. Galvin	1980s	Micro Scale Error Reduction

Standards Organizations

ISO International Organization for Standardization	CLSI Clinical and Laboratory Standards Institute (formerly known as NCCLS)
Guidance for quality in manufacturing and service industries	Standards, guidelines, and best practices for quality in medical laboratory testing
Broad applicability; used by many kinds of organizations	Detailed; applies specifically to medical laboratories
Uses consensus process in developing standards	Uses consensus process in developing standards

ISO Documents - Laboratory

ISO 9001:2000 Quality Management System Requirements

Model for QA in design, development production, installation, and servicing

ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories

ISO 15189:2007 Quality management in the clinical laboratory

ISO 15189:2007

- The foundation of international medical laboratory quality management
- Medical laboratories-Particular requirements for quality and competence

CLSI Quality Documents

HS1-A2 A Quality Management System Model for Health Care

- describes quality system model, 12 essentials
- aligns to ISO 15189 and parallels ISO 9000
- applies to all health care systems

GP26-A3 Application of Quality Management System Model for Laboratory Services

- describes laboratory application of quality system model
- relates the path of workflow to the quality system essentials
- assists laboratory in improving processes
- relates to HS1-A2 and ISO 15189

In summary

- Quality management is not new.
- Quality management grew from the good works of innovators who defined quality over a span of 80 years.
- Quality management is as applicable for the medical laboratory as it is for manufacturing and industry.

Key Messages

- A laboratory is a complex system and all aspects must function properly to achieve quality.
- Approaches to implementation will vary with local situation.
- Start with the easiest, implement in stepwise process.
- Ultimately, all quality management system elements must be addressed.

Questions?

Comments?

http://www.who.int/ihr/training/laboratory_quality/en

