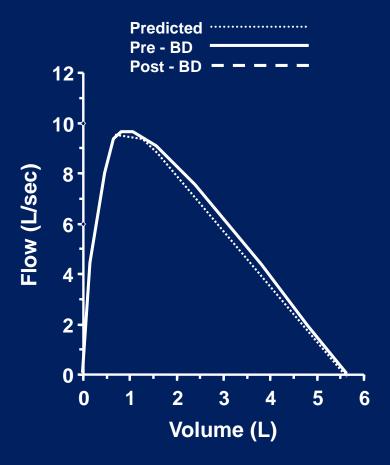
Spirometry: Case studies

John D. Brannan PhD

Scientific Director, Dept Respiratory & Sleep Medicine

JOHN HUNTER HOSPITAL

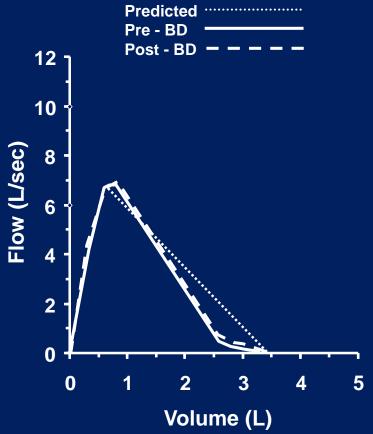

February 2020

john.brannan@health.nsw.gov.au

- Male
- 25 years, height 175 cm
- Never smoked
- No history of respiratory disease
- Normal chest x-ray
- Referred for pre-employment lung function tests

Case 1: Results

	Predicted		Pre-BD	Post-BD
	Mean	LLN		
FEV ₁ L	4.44	3.67	4.35 (98%)	-
FVC L	5.36	4.46	5.60 (104%)	-
FEV ₁ /FVC %	83	73	78	-
FEF _{25-75%} L/s	4.6	3.1	5.3	-
PEF L/s	10.0	7.7	9.8	-


Case 1: Interpretation

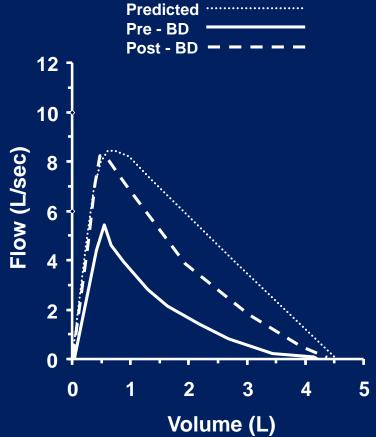
Interpretation: Normal ventilatory function

- The shape of the flow volume loop and all spirometric indices are within the normal range
- These results indicate normal ventilatory function
- This provides useful baseline lung function data for future comparison

- Female
- 40 years, height 165 cm
- Ex-smoker for 10 years; estimated consumption of 11 pack years
- No significant history of respiratory disease other than occasional URTI
- No unusual findings on recent chest X-ray
- Referred for routine lung function tests prior to abdominal surgery

Case 2: Results

	Predicted		Pre-BD	Post-BD
	Mean	LLN		
FEV ₁ L	3.11	2.51	2.81 (90%)	2.90
FVC L	3.81	3.10	3.70 (97%)	3.85
FEV ₁ /FVC %	82	73	76	75
FEF _{25-75%} L/s	3.2	1.9	1.8 (56%)	1.9 (59%)
PEF L/s	7.1	5.4	6.9	6.9


Case 2: Interpretation

Interpretation: Small airway disease

- The flow volume curve shows abnormally low flows at low lung volumes suggesting that the small airways rather than the large airways are abnormally narrow during forced expiration
- This is confirmed by the normal FEV_1 , and PEF but abnormally low $FEF_{25-75\%}$ (56% predicted)
- Post-bronchodilator, there was no significant improvement in small airway function
- These results suggest the presence of small airway disease, probably the result of her smoking history

- Male
- 20 years, height 170 cm
- Never smoked
- History of episodic wheeze and chest tightness, particularly in the early morning and during exercise
- PEF performed by his family doctor was 43% below the predicted value
- Referred to confirm diagnosis of asthma and document the degree of reversibility

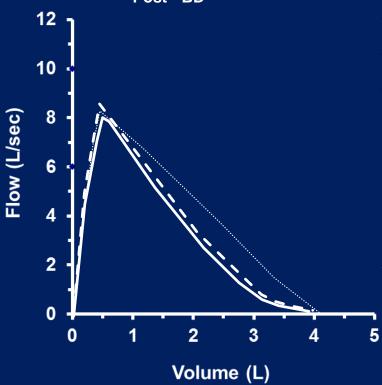
Case 3: Results

Predicted		Pre-BD	Post-BD
Mean	LLN		
4.30	3.58	2.31 (54%)	3.36 (78%)
5.1	4.25	4.65 (91%)	4.90 (96%)
84	74	50	69
4.7	3.2	2.1	3.9
9.4	7.3	5.5	8.3
	Mean 4.30 5.1 84 4.7	Mean LLN 4.30 3.58 5.1 4.25 84 74 4.7 3.2	Mean LLN 4.30 3.58 2.31 (54%) 5.1 4.25 4.65 (91%) 84 74 50 4.7 3.2 2.1

Case 3: Interpretation

Interpretation: asthma

- The concavity in the expiratory flow volume curve and low FEV₁/FVC ratio indicates an obstructive ventilatory defect
- Pre-bronchodilator FEV₁ is 54% predicted, indicating a moderate obstructive ventilatory defect
- There was a substantial 24% (1.05 L) improvement in FEV_1 post salbutamol with the FEV_1/FVC ratio increasing from 50% to 69%
- These results are highly suggestive of asthma

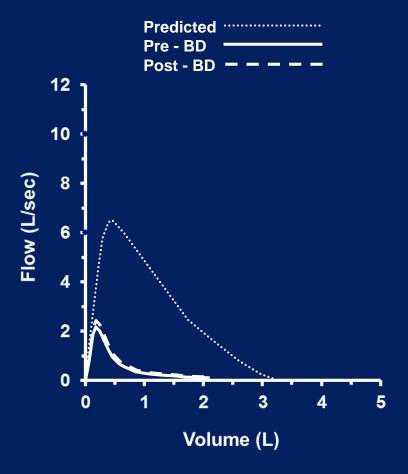

Case 3: Pathophysiology

- In asthma the airflow obstruction is due to:
 - Contraction of bronchial smooth muscle (reversible)
 - Inflammatory thickening of bronchial mucosa (may improve with steroids)
 - Mucus in the bronchial tubes

- Male
- 35 years, height 163 cm
- Smoker for 15 years; estimated consumption of 12 pack years
- No significant history of respiratory disease other than occasional URTI and productive cough in morning
- Attended GP for unrelated reason

Case 4: Results

	Predicted		Pre-BD	Post-BD
	Mean	LLN		
FEV ₁ L	3.65	2.97	2.78 (76%)	2.90 (79%)
FVC L	4.45	3.65	4.15 (93%)	4.29 (96%)
FEV ₁ /FVC %	81	71	67	68
FEF _{25-75%} L/s	3.7	2.4	1.9 (51%)	2.1 (54%)
PEF L/s	9.0	7.0	8.0	8.4


Case 4: Interpretation

Interpretation: Mild COPD

- The reduced FEV₁/FVC ratio (67%) and slight concavity in the flow volume curve indicates airflow obstruction
- The pre-bronchodilator FEV₁ is 76% and FEF_{25-75%} only 51% indicating mild airflow obstruction
- Post-bronchodilator there was little improvement in FEV₁ (change in FEV₁ = 3% and 0.12 L)
- Together with his smoking history, these results suggest mild
 COPD

- Male
- 73 years, height 165 cm
- Smoker of 50 years (65 pack years)
- History of increasing shortness of breath, chest infections, chronic cough and hospital admissions (× 2 in past two years) for respiratory failure secondary to pneumonia
- Recent chest X-ray shows significant hyperinflation
- Referred for lung function tests to document ventilatory function and response to bronchodilator

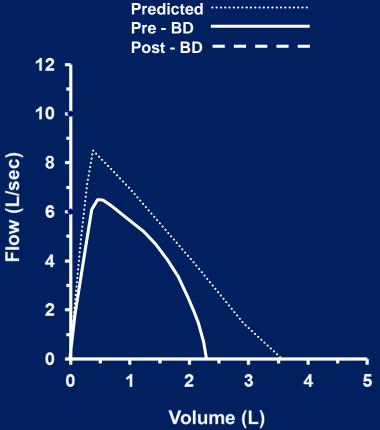
Case 5: Results

	Predicted		Pre-BD	Post-BD
	Mean	LLN		
FEV ₁ L	2.45	1.77	0.85 (35%)	0.90 (37%)
FVC L	3.42	2.61	2.10 (61%)	2.20 (64%)
FEV ₁ /FVC %	73	63	40	41
FEF _{25-75%} L/s	1.8	0.4	0.9	0.9
PEF L/s	6.7	4.7	2.2 (33%)	2.6 (39%)

TLC 132% predicted

Case 5: Interpretation

Interpretation: Severe chronic COPD


- The deep concavity in the flow-volume curve and very low pre-bronchodilator FEV₁ (35% predicted) and FEV₁/FVC ratio indicates a severe obstructive ventilatory defect
- There was no clinically significant improvement post bronchodilator (salbutamol plus ipratropium bromide)
- With this degree of airflow obstruction the reduced FVC is probably a consequence of airway closure
 - ie it is unlikely to be due to small lungs
- These results together with his smoking history are consistent with severe COPD

Case 5: Pathophysiology

- In COPD the airflow limitation is due to:
 - Inflammatory thickening and distortion of the airway walls (smokers small airway disease)
 - Expiratory collapse of airways due to loss of elastic support (emphysema)
- The VC is often well preserved until the disease is severe
- In emphysema residual volume (RV), functional residual capacity (FRC) and TLC are usually increased indicating:
 - Gas trapping (high RV)
 - Hyperinflation (high FRC and TLC)

- Female
- 40 years, height 170 cm
- Non-smoker, no past history of respiratory problems
- 5 years of joint aches and morning stiffness affecting hand, wrist, elbows, shoulders and knees
- Recent chest X-ray shows diffuse lung infiltrate
- Referred for assessment of dyspnoea

Case 6: Results

	Predicted		Pre-BD	Post-BD
	Mean	LLN		
FEV ₁ L	3.30	2.66	2.10 (64%)	2.15 (65%)
FVC L	4.06	3.31	2.35 (58%)	2.40 (59%)
FEV ₁ /FVC %	82	73	89	90
FEF _{25-75%} L/s	3.3	2.0	4.1	4.3
PEF L/s	7.4	5.6	6.3	6.4

TLC 64% predicted

Case 6: Interpretation

Interpretation: Restrictive ventilatory defect

- The flow-volume curve shows a reduced FVC and FEV₁ with a well preserved FEV₁/FVC ratio and maximal flows (ie no evidence of airway obstruction)
- These results are consistent with a restrictive ventilatory defect (confirmed by measuring lung volumes)
- There was no significant change after bronchodilator

Case 6: Pathophysiology

- In this patient the restrictive ventilatory defect was found to be due to fibrosing alveolitis associated with rheumatoid arthritis
- The supranormal flow rates are due to increased traction on the airways from the parenchymal tissue causing distension of the airways
- The dynamic lung volumes are reduced because the overall size of the lungs is restricted by inflammatory and fibrotic scar tissue